ГЛАВА 1. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПРИМЕНЕНИЕ МАГНИЯ 1.1. Свойства и применение магния Магний — двухвалентный элемент, имеющий ГП решетку с соотношением осей с/a = 1,62 (с = 0,02 нм, a = 0,32 нм), почти равным теоретическому значению (1,633). Серебристый блестящий металл, очень легкий и пластичный. Немагнитный, обладает высокой теплопроводностью. При нормальных условиях на воздухе покрывается оксидной пленкой. При нагревании свыше 600 °С металл горит с выделением большого количества тепла и света. Горит в углекислом газе и активно реагирует с водой, поэтому его бесполезно тушить традиционными способами. Магний не взаимодействует со щелочами, реагирует с кислотами с выделением водорода. Устойчив к галогенам и их соединениям; например, не взаимодействует с фтором, плавиковой кислотой, сухим хлором, йодом, бромом. Не разрушается под воздействием нефтепродуктов. Магний малостоек к коррозии, этот недостаток исправляют добавлением в сплав небольших количеств титана, марганца, цинка, циркония. Области потребления: · Большая часть добываемого магния используется для производства магниевых конструкционных сплавов, востребованных в авиационной, автомобильной, атомной, химической, нефтеперерабатывающей промышленности, в приборостроении. Магниевые сплавы отличаются легкостью, прочностью, высокой удельной жесткостью, хорошей обрабатываемостью. Они немагнитны, отлично отводят тепло, обладают в 20 раз большей устойчивостью к вибрации, чем легированная сталь. Магниевые сплавы применяются для изготовления резервуаров для хранения бензина и нефтепродуктов, деталей атомных реакторов, отбойных молотков, пневмотруб, вагонов; емкостей и насосов для работы с плавиковой кислотой, для хранения брома и йода; корпусов ноутбуков и фотоаппаратов. · Магний широко используется для получения некоторых металлов методом восстановления (ванадий, цирконий, титан, бериллий, хром и т. д.); для придания стали и чугуну лучших механических характеристик, для очистки алюминия. · В чистом виде входит в состав многих полупроводников. · В химической промышленности порошковый магний используют для осушения органических веществ, например, спирта, анилина. Магнийорганические соединения применяются в сложном химическом синтезе (например, для получения витамина А). · Порошок магния востребован в ракетной технике в качестве высококалорийного горючего. В военном деле — при производстве осветительных ракет, трассирующих боеприпасов, зажигательных бомб. · Чистый магний и его соединения идут на изготовление химических мощных источников тока. · Окись магния применяется для изготовления тиглей и металлургических печей, огнеупорного кирпича, при изготовлении синтетической резины. · Кристаллы фторида магния востребованы в оптике. · Гидрид магния представляет собой твердый порошок, содержащий большой процент водорода, который легко получить нагреванием. Вещество используется в качестве «хранилища» водорода. · Сейчас реже, но раньше порошок магния широко использовался в химических фотовспышках. · Соединения магния используют для отбеливания и протравливания тканей, для изготовления теплоизоляционных материалов, особых сортов кирпича. · Магний входит в состав многих лекарственных средств, как внутреннего, так и наружного (бишофит) применения. Его используют как противосудорожное, слабительное, седативное, сердечное, противоспазматическое средство, для регуляции кислотности желудочного сока, как антидот при отравлении кислотами, как дезинфицирующее желудочное средство, для лечения травм и суставов. · Магний стеарат используется в фармацевтической и косметической промышленности как наполнитель таблеток, пудры, кремов, теней; в пищевой промышленности применяется как пищевая добавка Е470, предупреждающая слеживание продуктов. Пригодные для производства ископаемые соединения магния – карналлит KCl · MgCl2 · 6H2O, магнезит MgCO3 и доломит MgCO3· CaCO3. В России около 80 % магния получают из карналлита и 20 % из магнезита. Карналлит – гигроскопическая ископаемая соль, содержащая наряду с магнием калий, а также примеси хлористого натрия и бромидов. Руду, добытую из недр, называют карналлитовой породой или естественным карналлитом. Естественный карналлит подвергают гидрохимическому обогащению, основанному на меньшей растворимости NaCl по сравнению с KCl и MgCl2. Дробленую породу растворяют при 110 ºС в оборотном растворе хлористого магния (32 % MgCl2). Основное количество NaCl остается в виде кристаллов и отделяется на ситах. Раствор направляют в вакуум-кристаллизаторы. Из полученной здесь пульпы кристаллов искусственный карналлит выделяют в отстойниках, а затем центрифугируют. Он имеет примерно следующий состав: 32 % MgCl2; 25 % KCl; 6 % NaCl; 37 % H2O. 1.2. Стандарты и технические характеристики магния Магний относится ко II группе периодической системы Д.И. Менделеева. Атомная масса магния 24,32. По химическим свойствам магний относится к щелочноземельным металлам. Магний плавится при 651 ºС и кипит при 1107 ºС. Полиморфных модификаций магний не имеет и во всем интервале температур ниже точки плавления сохраняет гексагональную плотноупакованную структуру с соотношением осей с/а (1,6235), почти равным теоретическому значению (1,633). Атомный диаметр магния равен 0,32 нм. Магний относится к наиболее легким конструкционным металлам; его плотность равна 1,74 г/см3 при 20 ºС. Удельная теплоемкость магния примерно такая же, как у алюминия, а скрытая теплота плавления в два раза ниже. Теплопроводность магния в полтора раза меньше, чем у алюминия, но больше, чем у стали. Коэффициенты линейного расширения магния и алюминия примерно одинаковы. Электросопротивление магния почти в два раза больше, чем у алюминия. Магний – парамагнитный металл. Магний незначительно захватывает тепловые нейтроны. Сечение захвата тепловых нейтронов для него равно 5,9 · 10-26 см2. Модули Юнга и сдвига магния невелики и составляют всего 44,1 ГПа и 17,85 ГПа. Они обнаруживают заметную анизотропию. Магний при низких температурах обладает невысокой пластичностью. При низких температурах скольжение происходит лишь по плоскостям базиса (0001). При нагреве до 200…300 ºС в магнии появляются дополнительные плоскости скольжения {1011} и {1120} и пластичность сильно возрастает. Во всех случаях скольжение осуществляется в направлениях. Пластическая деформация осуществляется также двойникованием по плоскостям {1012}. Прочностные свойства магния при комнатной температуре выше, чем у алюминия. Промышленность выпускает несколько марок первичного магния. По ГОСТ 804–93 первичный магний маркируется буквами «Мг» (содержание магния не менее 99,00 %), а цифры — сотые доли. Таблица 1.1 Химический состав стандартных марок первичного магния Марка | Mg, %, не менее | Всего примесей, % | Мг80 | 99,8 | 0,2 | Мг90 | 99,9 | 0,1 | Мг95 | 99,95 | 0,05 | Мг98 | 99,98 | 0,02 | Источник: по данным ГОСТ 804-93 |